Optical information transfer through random unknown diffusers using electronic encoding and diffractive decoding

Supplementary Information

Yuhang Li,^{a,b,c} Tianyi Gan,^{a,c} Bijie Bai,^{a,b,c} Çağatay Işıl,^{a,b,c} Mona Jarrahi,^{a,c} Aydogan Ozcan^{a,b,c,*}

^aElectrical and Computer Engineering Department, University of California, Los Angeles, USA, 90095 ^bBioengineering Department, University of California, Los Angeles, USA, 90095, ^cCalifornia NanoSystems Institute (CNSI), University of California, Los Angeles, USA, 90095

*Correspondence to: ozcan@ucla.edu

Supplementary Figures and Video

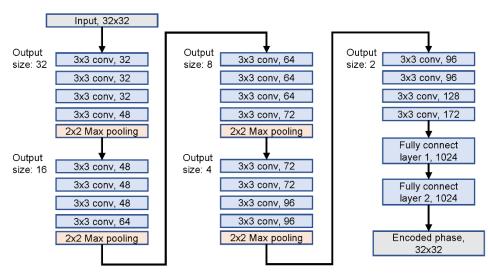


Fig. S1 The architecture of the electronic encoder neural network (CNN).

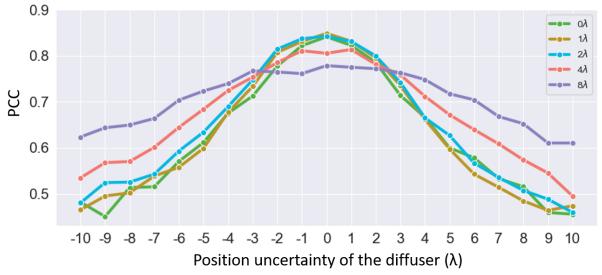
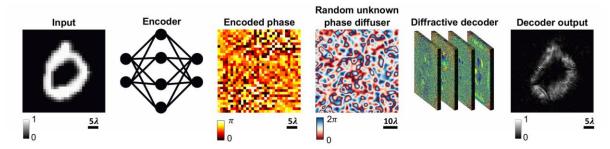



Fig. S2 The data transmission fidelity as a function of the diffuser position uncertainty. Five hybrid models were trained with varying vaccination levels, i.e., 0λ (no vaccination), $\pm 1\lambda$, 2λ , 4λ and 8λ to transfer the optical information of interest through random phase diffusers with a correlation length of $L = 5\lambda$, while maintaining all other parameters the same.

Video 1 Results of the electronic encoder and the diffractive decoder (jointly-trained) that transfer different optical images of interest through random unknown phase diffusers which are constantly evolving. (MP4, 13.3 MB)